HYDROXYAPATITE ALUMINA COMPOSITES

Serdar Pazarlioglu, de Oliveira Agda Aline Rocha, Serdar Salman

1 The Department of Metallurgy and Material Science Engineering, Faculty of Technology, University of Marmara, Goztepe Campus, Istanbul/TURKEY. 2 Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Pampulha and Gerente de P&D da JHS Biomateriais Rua Ouro Branco, Sabará/MG, Belo Horizonte, MG, Brasil

In the present study, the effect of sintering on alumina (Al\textsubscript{2}O\textsubscript{3}) doped commercially available synthetic hydroxyapatite (CSHA) composites were investigated via a series of analysis and mechanical tests. The rates of Al\textsubscript{2}O\textsubscript{3} were in weight %2.5 and %5. Sintering temperatures were change between 900°C and 1300°C. Experimental results show that CSHA powders are stable up to 1100°C, but it starts to decomposition at higher temperatures and occurs in HA matrix some second and/or third phases such as ?-TCP, ?-TCP and CaO. Due to the formation of these phases compressive strength of CSHA powders drastically decrease at elevated temperatures. However, Al\textsubscript{2}O\textsubscript{3} doped samples are stable up to 1200°C, this is related to reduction of undesirable phases and also grain growths via doped material. Some calcium aluminum oxide phases such as CaAl\textsubscript{2}O\textsubscript{4}, CaAl\textsubscript{4}O\textsubscript{7} and Ca\textsubscript{2}Al\textsubscript{3}O\textsubscript{6} were detected for CSHA- Al\textsubscript{2}O\textsubscript{3} composites. This are related to formation of reactions between CaO and Al\textsubscript{2}O\textsubscript{3}. After SEM analysis, microcracks were identified for CSHA powders sintered at 1200°C and 1300°C. No microcracks were observed for CSHA-Al\textsubscript{2}O\textsubscript{3} composites at same temperatures. While the highest density and hardness values were obtained to pure CSHA as 3.06 gr/cm3 and 4.62 GPa, the highest compressive strength was obtained to CSHA-5A samples sintered at 1200°C as 214 MPa.

Acknowledgement: This work has been supported by the Scientific Research Project Program of Marmara University (Project No. FEN-D-100616-0290).

Keywords: synthetic hydroxyapatite, CSHA- Al2O3 composites, compressive strength of CSHA

References:

Presenting author’s email: ssalman@marmara.edu.tr