UV-EMITTING MESOPOROUS SILICA YAG:Pr CORE-SHELL NANOSCINTILLATOR FOR RADIATION MEDIATED PHOTODYNAMIC THERAPY

Prakhar Sengar, Gustavo Hirata

Recent advancement photodynamic therapy for cancer has emphasized the potential of using light emission properties of nanoscintillator in response to ionizing radiation, to overcome its limitations. Here we present a novel composite material consisting of UV (300-450 nm) emitting $\text{Y}_3\text{Al}_5\text{O}_{12}^{3+}$ (YP) nanoscintillator core with a mesoporous silica shell. The optimized core-shell nanocomposite of $\text{YP}@\text{SiO}_2@\text{mesoporousSiO}_2$ (YPMS) consists of a sol-gel synthesized pure and crystalline YP core of ~ 75 nm. Covered with thin nonporous silica mid layer and ordered mesoporous silica shell of ~ 14 nm thickness and pore width of ~ 4 nm. The core-shell nanocomposite system was successfully conjugated with folate and Protoporphyrin IX (PPIX) to form the basis of very recently explored X-ray-mediated PDT system. The integration of UV emission of YP nanoscintillator and biological cargo carrying capacity of mesoporous silica can provide a very efficient platform for various biomedical application.

Keywords: YAG:Pr, Mesoporous silica, X-ray mediated photodynamic therapy

References:

Presenting author’s email: prakharsengar@gmail.com