THE EFFECTS CAUSED BY THE ADDITION OF PALADIUM NANOPARTICLES TO Sn-Ag ALLOY FOR DENTAL USE

Héctor Daniel Nájera Cabrales1, Lesli Ortega Arroyo1, Jorge Humberto Vargas Aparicio1, Vladimir Aguirre Buitrón1, Jesús Ortega Rueda de León2 y Víctor Castaño Meneses3

1Escuela Superior de Ingeniería Mecánica y Electrónica, ESIME-IPN Azcapotzalco, Av. Las Granjas 682, Colonia Santa Catarina, C.P. 02550, Mexico, D.F. 2Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, Mza. 11, Lote 1119-33, Sm. 255 Cancún Quintana Roo, C.P. 77500, Mexico. 3Centro física aplicada y tecnología avanzada de la UNAM-CFATA en Juriquilla, Km 15

It has been found that adding refined material in the mechanical properties of alloys that have no reinforcing. Thus the effect of adding palladium nanoparticles in Sn-Ag alloy was evaluated. The manipulation of these atomic arrangements in nanometer state leads to the possibility of designing new materials with properties required for certain technological applications [1]. One possibility is the application of these materials in nanocrystalline alloys for dental use and another applications.

The effects caused by the addition of palladium nanoparticles, will be evaluated using the response surface methodology (MSR). The tests which the samples to be evaluated shall be submitted are: hardness (Vickers), grain size and microstructure. Through the Vickers hardness test, a hardness of palladium nanoparticles without material with a value of 100 was obtained HVN. While having NPs present a hardness of 400 HVN already considered Type IV extra hard alloy according to the classification of dental alloys However the Ag-Sn alloy is only used for teaching in dental laboratories as it does not meet the appropriate mechanical properties for use [2]

The objective of this research is to reinforce the mechanical properties of the materials mentioned above by the addition of nanomaterials and will be suitable for use in dentistry.

Keywords: Alloy, Nanoparticles, Sn-Ag

References:

Presenting author’s email: najeravolta@hotmail.com