PURE AND Mn-DOPED LiNbO$_3$ NANOFOBRES

Maria Cristina Maldonado Orozco1, Claudia Georgina Nava Dino1, Roberto Narro García1, Juan Pablo Flores De Los Ríos1, Raúl Sandoval Jabalera1, Martha Ochoa Lara2, Francisco Espinosa Magaña2

1Universidad Autónoma de Chihuahua, Facultad de Ingeniería, Mexico. 2Centro de Investigación en Materiales Avanzados, S.C., Física de Materiales, Mexico.

Electrospinning is a powerful technique to synthesize polymeric and ceramic fibers. In this work, pure and Mn-doped LiNbO$_3$ nanofibers were synthesized by the electrospinning method, followed by a heat treatment. Niobium ethoxide Nb(OCH$_2$CH$_3$)$_5$, lithium hydroxide (LiOH), manganese acetate Mn(C$_2$H$_3$O$_2$)$_2$ and polyvinylpyrrolidone (PVP), were dissolved in ethanol C$_2$H$_5$OH to obtain the precursor solution. This solution was delivered into a metallic needle at a constant flow rate of 0.3 mL/h by a syringe pump. The metallic needle was connected to a high-voltage power supply and a grounded aluminum foil was placed 15 cm the needle tip, where the as-spun composite is collected.

In order to determine the annealing temperature to reach the desired LiNbO$_3$ and LiNb$_{1-x}$Mn$_x$O$_3$ compounds, the thermal stability of as-spun composites were analyzed by thermogravimetry-differential scanning calorimetry (TGA–DSC). Morphology and microstructural characterization of calcined nanofibers were performed by X-ray diffraction (XRD) measurements, Field-emission scanning electron microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). Further material identification was conducted by acquiring Raman spectra.

Pure and Mn-doped LiNbO$_3$ nanofibers have been successfully prepared by electrospinning process followed by calcination at 700 Â°C for 2 h, showing a length of few µm and formed by irregular shaped nanoparticles with size between 40 and 120 nm.

Keywords: Nanofibers, LiNbO$_3$, Doped

Acknowledgment:

Technical support of Carlos Ornelas, Wilber Antúnez, Ernesto Guerrero, Manuel Román and Daniel Lardízabal is greatly appreciated.

Presenting author’s email: cmaldona@uach.mx