In this report, the growth of Pd(OH)$_2$-PdCO$_3$ amorphous powders by using the green chemical bath at ~80°C temperature was carried out, and then further submitted to thermal annealing treatment (TAT) at ~1000°C in an air atmosphere. Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), optical absorption (OA) and Photoluminescence (PL), examined the transformation of such powders into Palladium nanoparticles. The FTIR displayed absorption bands in the Δ400-3600 cm$^{-1}$ region, which can be attributed to the vibrations of anions and bands located at Δ708, Δ578, Δ1638 cm$^{-1}$, as well as at Δ3013 cm$^{-1}$ which are typical of the OH$^-$ vibrations presented in the as-grown powders. These bands disappeared completely after TAT. XRD diffractograms of Pd presented five peaks (111), (200), (220), (311), (222). The band gap energy showed two transitions located at Δ1.5eV and Δ3.7 eV.

Keywords: Pd(OH)$_2$-PdCO$_3$, amorphous growth, chemical bath

Presenting author's email: vladimir.maldonado@correo.buap.mx