Pd(OH)$_2$-PdCO$_3$ AMORPHOUS POWDER GROWN BY CHEMICAL BATH AND ITS TRANSFORMATION INTO PD NANOCRYSTALS AFTER THERMAL ANNEALING TREATMENT

Marcial Zamora Tototzintle1, Oscar Portillo Moreno2, Vladimir Maldonado Guzman3, Miguel Hernandez Hernandez4, José Albino Moreno Rodríguez5

1Benemerita Universidad Autonoma de Puebla, Ciencias Químicas, laboratorio de química general, Mexico. 2Benemerita Universidad Autonoma de Puebla, Fisico Matematicas, laboratorio de ciencia de materiales, Mexico. 3Benemerita Universidad Autonoma de Puebla, Facultad de Ingeniería Química, Mexico. 4Benemerita Universidad Autonoma de Puebla, Físico Matemáticas, Mexico. 5Benemerita Universidad Autonoma de Puebla, Ciencias Quimicas, Mexico.

In this report, the growth of Pd(OH)$_2$-PdCO$_3$ amorphous powders by using the green chemical bath at ~80ºC temperature was carried out, and then further submitted to thermal annealing treatment (TAT) at ~1000ºC in an air atmosphere. Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), optical absorption (OA) and Photoluminescence (PL), examined the transformation of such powders into Palladium nanoparticles. The FTIR displayed absorption bands in the ?400-3600 cm$^{-1}$ region, which can be attributed to the vibrations of anions and bands located at ?708, ~578, ?1638 cm$^{-1}$, as well as at ~3013 cm$^{-1}$ which are typical of the OH$^-$ vibrations presented in the as-grown powders. These bands disappeared completely after TAT. XRD diffractograms of Pd presented five peaks (111), (200), (220), (311), (222). The band gap energy showed two transitions located at ~1.5eV and ~3.7 eV.

Keywords: Pd(OH)$_2$-PdCO$_3$, amorphous growth, chemical bath

Presenting author's email: vladimir.maldonado@correo.buap.mx