GUIDED NANOWIRE OPTOELECTRONICS

Eitan Oksenberg1, Ella Sanders1, Sara Martí Sánchez2, Ronit Popovitz Biro1, Lothar Houben1, Jordi Arbiol2, Ernesto Joselevich1

1Weizmann Institute of Science, Department of Materials and Interfaces and Chemical Research Support, Israel. 2Institut Català de Nanociència i Nanotecnologia, Advanced Electron Nanoscopy Group, Spain.

The large-scale organization of nanowires with controlled orientation on surfaces remains a major obstacle toward their large-scale integration into functional devices. During the last few years we have reported the growth of aligned horizontal nanowires and nanowire-heterostructures of various semiconductors including ZnSe, ZnTe, CdSe, CdS, core-shell ZnSe@ZnTe and CsPbBr\textsubscript{3} with controlled crystallographic orientations on different planes of sapphire. We exploit surface-material interactions, either epitaxial or graphoepitaxial, to guide horizontal nanowires during their growth into well-organized assemblies. Here we show how the nanowire arrays are easily integrated into optoelectronic devices in a simple and parallel manner. The performance of fast photodetectors and photovoltaic devises based on surface-guided horizontal NWS demonstrates the potential of the surface-guided approach to achieve bottom-up assemblies of nanowires with complex structures and controlled optoelectronic properties.

Keywords: Perovskite, Assembly, Epitaxy

Presenting author’s email: eitan.oksenberg@weizmann.ac.il