LEAD (Pb) REMOVAL BY HYBRID MATERIAL BASED ON NATURAL ZEOLITE - MULTI-WALLED CARBON NANOTUBES (NZ-MWCNT) IN WATER

H. I. Cruz Luís¹, M. S. Javier Ríos¹, D. I. Luis Pérez¹, M. de J. Gil Gallegos¹, A.D. Pérez Santiago¹

¹ Instituto Tecnológico de Oaxaca, Av. Ing. Víctor Bravo Ahuja No. 125, Col. Centro, C.P. 68030, Oaxaca, Oax., México

In this work we studied the kinetics of lead removal in water through hybrid nanostructured material (NZ-MWCNT) based on carbon nanotubes supported on natural zeolite from Valles Centrales, Oaxaca. As a result of pottery activity in the region of Oaxaca Valley, lead used in these activities is considered a worrying problem as water contaminant. In this way the outstanding properties of multi-walled carbon nanotubes (MWCNT) allows their use in removal of metals, moreover if they are combined with a porous materials as zeolite (NZ) results in a hybrid material with accurate properties for contaminant removal. NZ-MWCNT were synthesized by the method of spray pyrolysis, under specific conditions. After NZ-MWCNT were characterized by scanning and transmission electron microscopy (SEM and TEM respectively). In order to obtain the kinetics of removal a solution of Pb was prepared using a concentration of 10 ppm, then NZ-MWCNT were added for remove Pb from water, as with the natural zeolite, later the solution were filtered. The filtrate was analyzed in an inductively coupled plasma mass spectrometry (ICP-MS), to obtain the percentages of Pb removal. The kinetics of Pb removal obtained shows a maximum percentage of 99.96% and 99.27% for NZ-MWCNT and NZ at 120 min, respectively. However, for NZ-MWCNT exhibits 94.5 % of removal only in 10 min, in contrast of NZ which reaches the same percentage in 60 min, this shows a higher efficiency of NZ-MWCNT in Pb removal.

Keywords: Hybrid nanostructured, lead removal, natural zeolite

References:


Presenting author's email: holanda.crz@gmail.com