PRODUCTION AND STRUCTURAL AND MAGNETIC CHARACTERIZATION OF A Bi$_{1-x}$Lu$_x$FeO$_3$ SYSTEM

Iván Betancourt1, Julieth Alexandra Mejía Gómez2, Aura Janeth Barón González1, Mercedes Díaz Lagos3, Carlos Arturo Parra Vargas1,4

1Grupo de Física de Materiales. Universidad Pedagógica y Tecnológica de Colombia, Tunja, Boyacá, Colombia. 2Facultad de ciencias, Universidad Antonio Nariño sede Tunja, Boyacá Colombia. 3Facultad Seccional Sogamoso- Ingeniería Geológica, Universidad Pedagógica y Tecnológica de Colombia, Calle 4 Sur No. 15-134, Sogamoso. 4Programa de Pós-Graduação em Ciências de Materiais, CCEN, Universidade Federal de Pernambuco, 50670-901, Recife PE, Brazil

A series of Bi$_{1-x}$Lu$_x$FeO$_3$ samples with different Lu concentrations ($x = 0$, 0.25 and 0.3) was prepared by solid state reaction. Scanning Electron Microscopy (SEM) evidences polycrystalline particles with predominantly granular behavior. Rietveld refinement of experimental X-ray diffraction patterns shows that Lu-doped BiFeO$_3$ crystallizes in a distorted perovskite with R3c rhombohedral symmetry and the lattice parameters decrease as Lu concentration increases. VSM Magnetometry measurements were performed to assess the effect of substitution of Bi ions by Lu ions on the magnetic properties of BiFeO$_3$. Magnetization-temperature curves of zero field cooled and non-zero field cooled (FC) show that close to 250 K, a transition can be observed. In addition, near 120 K, an anomalous curvature type Van Vleck originated from Lu$^{3+}$ substitution can be noticed. The results obtained from all the techniques evidence the effect of Lu on the physical properties of BiFeO$_3$.

Keywords: Paramagnetic, BFO, Magnetic response

Presenting author’s email: carlos.parra@uptc.edu.co