We present the results of first-principles molecular orbitals calculations (HSEh1PBE/6-31g(d) [1]) describing the structural and electronic properties of a new silicon carbide fullerene (SiCF) rich in carbon with a chemical composition of $\text{Si}_{24}\text{C}_{36}$ for the pristine case (in analogy to Boron Nitride fullerene [2]) and doped with nitrogen atoms ($\text{Si}_{24}\text{C}_{36-n}\text{N}_n$; $n=1,5,10,15,20$). The results of the simulation indicate that no complex frequencies are obtained; this guarantees the stability of the structure 0D. Also, it present non-magnetic semiconductor characteristics (HOMO-LUMO gap of 0.89 eV), high polarity, 1.16 D, and low chemical reactivity ($\beta=-5.75$ eV), which It makes it viable for applications such as drug delivery.

On the other hand, when it is doped with nitrogen atoms shows a transition semiconductor-conductor due to reduction of HOMO-LUMO gap and work function. This behavior indicates their possible usefulness for device design.

Keywords: First-Principles Calculations, fullerene, Silicon Carbide

References:

Presenting author’s email: franbertex@gmail.com