Metal-oxygen batteries continue to attract interest due to their high theoretical specific energies [1]. However, several challenges must be overcome before these batteries can be viable. For example, in the case of Li-O_2 systems, sluggish charge transport within the Li_2O_2 discharge product has been proposed to limit capacity and round-trip efficiency [2,3]. This presentation will describe multi-scale computational studies, spanning from the nano- to the macro-scale, aimed at revealing the mechanisms responsible for these limitations. Based on these findings, opportunities for improving cell performance will be discussed [4,5].

Keywords: Energy Storage, Charge Transport, Multi-scale Modeling

References

Presenting author’s email: djsiege@umich.edu