The near electric field (NEF) around plasmonic nanoparticles is very important for applications in surface-enhanced spectroscopies, where infrared absorption, Raman scattering, and fluorescence emission of molecules and ions near the nanoparticle surface are enhanced. In the present work, we have calculated the near electric field enhancement (|E|/|E₀|, where E₀ is the incident electric field) around Au@SiO₂ core-shell nanoparticle immersed in air as a function of the geometrical parameters. We have found that the NEF for an Au@SiO₂ with thick shell (thicker than 5 nm) has its maximum value near the Au core and decreases with distance until the shell surface, in which it increases again and then diminishes as it moves away from the nanoparticle. This maximum value near the core decreases as the shell thickness decreases and, in contrast, the field at the shell increases. We demonstrate that for smaller shell thicknesses (less than 5 nm) the maximum intensity of the electric field is no longer on the core, but on the shell. Additionally, we compare the near-field and far-field optical properties, demonstrating the extinction efficiency factor (Qₜₑₓₜ) and near-core NEF intensities behave oppositely with the increase of shell thickness, i. e., Qₜₑₓₜ intensity decreases and the NEF near core increases. The results provide a better understanding of the behavior of the near electric field of Au@SiO₂ nanoparticles for their applications in surface-enhanced spectroscopies.

Acknowledgements: The work was supported by CONACyT, VIEP-BUAP and DITCo-BUAP, Mexico.

Keywords: Plasmonic Nanoparticle, Near Electric Field, Surface Enhanced

Presenting author's email: jmontano@ifuap.buap.mx