MECHANICAL MILLING INDUCED PHASE TRANSITION ON A TiO$_2$ AND EFFECT ON MUTIWALL CARBON NANOTUBES FUNCTIONALIZATION

Serrano Corrales L. I.a, Aragón Guajardo J. R.b, Gámez Corrales R.c, Gutiérrez Acosta K. H.b, González Martínez J. R.b, López Vásquez L. F.c

a) Posgrado en Ingeniería Química, Universidad de Sonora. b) Departamento de investigación en Física, Universidad de Sonora. c) Departamento de Fisica, Universidad de Sonora

In this work we carried out a study of phase transition of TiO$_2$ anatase to rutile phase induced by thermal energy supplied by the pellets in a mechanical milling technique and its effect on the interaction with carbon nanotubes. These experiments were performed using a ratio of 1:25 by weight / weight of sample material and pellets, at constant time of 4 hours and different speeds of milling: 350, 400, 450 and 500 rpm. Interactions between the different phases and the CNT and the phase transitions were monitored by micro Raman and UV-vis spectroscopy. It showing the appearance of bands at 261 and 586 cm$^{-1}$ corresponding to the rutile phase, UV-Vis allowed us to determine the interaction between the different phases of TiO$_2$ and carbon nanotubes due to the occurrence of a focused 586 nm band.

Keywords: Titanium Dioxide, MWCNT, mechanical milling

Presenting author’s email: Luisiv.sc@gmail.com