STRUCTURE, MORPHOLOGY AND MAGNETIC PROPERTIES OF COBALT NANOFE RRITES SYNTHESIZED THROUGH COMBUSTION METHOD

Prabhakaran Thandapani1,2, Mangalaraja Ramalinga Viswanathan1, and Hemalatha Jawaharlal2

1Advanced ceramics and nanotechnology laboratory, Department of Materials engineering, Faculty of engineering, University of Concepcion, Concepcion, Chile - 4070409, 2Advanced Materials Lab, Department of Physics, National Institute of Technology, Tiruchirappalli, India - 620015

Highly crystalline cobalt nanoferrites were synthesized through combustion route using DL-alanine as fuel. The nanoferrite particles were calcined at two different temperatures of 500 and 800°C for 2 hours to investigate phase purity, functional and magnetic properties. The synthesized cobalt nanoferrites confirmed the formation of single-phase spinel structure in both as-prepared and calcined conditions. High saturation magnetization of 71.1 emu/g and high coercivity value of 1400 Oe were obtained for as-prepared and calcined cobalt nanoferrites at 500°C for 2 hours, respectively. A systematic investigation on cobalt nanoferrites was carried out by a detailed study on the structural, morphological and magnetic properties.

Acknowledgments: The authors gratefully acknowledge the FONDECYT Project No.: 3160170, Government of Chile, Santiago, for the financial assistance and NIT, Tiruchirappalli, Tamilnadu, India for extending their instrumentation facilities.

Keywords: Cobalt nanoferrites, Combustion, Magnetization

References:

Presenting author’s email: prabhakarant85@gmail.com