QUANTUM MOLECULAR MACHINES

S.W. Hla

1Nanoscale and Quantum Phenomena Institute, Department of Physics & Astronomy, Ohio University, OH 45701, USA. 2 Center for Nanoscale Materials, Nanoscience and Technology Division, Argonne National Laboratory, IL 60439, USA.

One of the goals of nanotechnology is the development of complex molecular machines that can be operated with atomic level control in a solid-state environment. Most biological molecular machines have the sizes from tens of nanometers to a few microns—a range where classical machine concepts hold. However, artificially designed molecular machines can be in the size range down to a few nanometers or less, which is in the range of quantum processes. In this talk, we will present various artificial molecular machines such as molecular motors and linear transport devices such as molecular cars operating in the quantum regime on materials surfaces. Fundamental operations of these synthetic molecular machines are investigated at one molecular machine-at-a-time in an atomically clean environment using low temperature scanning tunneling microscopy (STM), tunneling spectroscopy, and molecular manipulation schemes [1,2]. These investigations reveal how charge and energy transfer are taken place within single molecular machines as well as among the molecular machines in the molecular networks. Moreover by introducing dipole active components in the rotor arms of the molecular motors, communication among the molecules can be introduced via dipolar interaction. In addition to single molecule operations, synchronization of molecular motors can be achieved depending on the symmetry of the molecular assemblies on surfaces and the strength of applied electric field energy. Here, all the molecular motors can be rotated in a synchronized manner using 1V or higher electric field supplied from the STM tip. Below this bias, the rotor arms of the molecular motors can reorient into different directions. Careful analyses reveal that such reorientations of the molecular motors are not random, but they are coordinated to minimize the energy. Furthermore, individual molecular motors can be charged using the inelastic tunneling scheme with the STM tip. This introduces spin-active components within the molecular motors and enables us to investigate spintronic properties of individual molecular motors at the sub-molecular scale using tunneling spectroscopy. For the linear transport, we will present the latest development of molecular hoverboards and molecular cars for a control transport at the nanoscale.

Keywords: Molecular Machines, Molecular Manipulation, STM

References:


Presenting author’s email: hla@ohio.edu