SELF-ASSEMBLING DNA MOLECULAR MATERIALS FOR APPLICATIONS IN BIONANOFABRICATION AND MEDICINE

Thom LaBean1
1North Carolina State University

We are developing bioinspired materials, designed to self-assemble using programmed molecular recognition, for a variety of biomedical applications as well as for fabrication of nanoelectronic devices1. We use structural DNA nanotechnology to organize proteins, peptides, inorganic nanoparticles (metals, oxides, carbon, and semiconductors), nucleic acid aptamers, and chemical moieties into materials with micron-scale dimensions and nanometer-scale feature resolution. Recent results will be presented showing our ability to regulate blood coagulation2, affect cell signaling pathways3, and probe cell adhesion forces. We will also demonstrate a new chemical quenching method for monitoring supramolecular folding pathways4, and describe diblock polypeptides capable of solution compatibilization of diverse building blocks to maximize assembly yields5,6. Finally, we will introduce preliminary aerogel materials containing imbedded device networks being developed for eventual use as 3D integrated neural-like networks for information processing.

Keywords: molecular assembly, DNA nanotechnology, bionanoscience

References:

Presenting author’s email: thlabean@ncsu.edu